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Abstract

The Haringx theory is usually employed to describe the mechanical behavior of rubber bearings subjected to a
compressive axial load and a lateral shear deformation, but it does not consider the damping effect. In order to study
the behavior of isolation bearings which possess an energy-dissipation capacity, the explicit formulas for the horizontal
stiffness of viscoelastic columns and the corresponded height reduction are derived by the method of variable sepa-
ration. These explicit formulas are then applied to develop an identification procedure to find the shear modulus and
loss factor of the rubber using the cyclic shear tests of isolation bearings. Through this identification procedure, the
empirical formulas for the shear modulus and the loss factor of rubber are established as functions of the strain am-
plitude and the excitation frequency. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Base isolation is a technique for earthquake protection in which isolation bearings are installed in building
foundations to reduce the damaging motion that horizontal earthquakes transmit to buildings. An isolation
bearing consists of thin sheets of rubber bonded to interleaving steel plates, thus, providing sufficient vertical
rigidity to sustain gravitational loading and yet allowing horizontal flexibility to shift the fundamental
frequency of the isolated building away from the dominant frequency range of most earthquakes.

The deformation of isolation bearings is usually analyzed by Haringx’s theory (Haringx, 1949; Kelly,
1993) which is an elastic beam theory considering the effects of axial loading and shear deformation. By this
theory, the horizontal stiffness of the bearings is shown to decrease with an increase in the compressive axial
load. However, most isolation bearings possess the capacity of energy dissipation, which cannot be sim-
ulated by the elastic column model utilized in Haringx’s theory. Koh and Kelly (1986, 1989) previously used
a viscoelastic column model to analyze the steady-state response of isolation bearings subjected to a si-
nusoidal horizontal force and a constant vertical load. They showed that increasing the compressive vertical
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load can enhance the energy dissipation of the viscoelastic column. Their solution was based on the mode
superposition method and is an infinite series of complex numbers. Although they show that the conver-
gence of the series is very rapid and the first term of the series already gives a good approximation, the form
of complex numbers is not convenient for application. In this article, the horizontal stiffness and the
corresponding loss angle of the viscoelastic column are solved by the method of variable separation and the
formulas for these solutions are expressed in terms of real numbers, which are then applied to investigate
the behavior of the columns under the excitation of sinusoidal shear forces and constant axial loads.

To define the stiffness and damping characteristics of isolation bearings requires a knowledge of the
material properties of rubber. Although there is a standard test procedure to measure the shear modulus of
rubber (ASTM, 1987), the properties of the rubber used in the bearings are somewhat different from the
properties measured in the standard test due to different curing conditions and differences in specimen size
between the isolation bearings and the specimens of standard test. By means of the theoretical solution of
viscoelastic columns, a procedure to identify the shear modulus and loss factor of the rubber from the cyclic
shear tests of isolation bearings is proposed in this article. Through this identification procedure, the de-
pendence of the material properties on the strain amplitude and input frequency can be explored.

2. Theoretical model
2.1. Steady-state response

The deformation of a viscoelastic column of height /2 is shown in Fig. 1(a). The lower end of the column is
fixed against any displacement and rotation, whereas the upper end is allowed to move horizontally and
vertically but is still constrained against rotation. The x-axis denotes the centroidal axis of the column with the
origin located at the bottom of the column. When the upper end of the column is subjected to a constant
compressive force P and a time-varied horizontal force, F(¢), it will induce the bending moment M (x, ¢) and
shear force V' (x, ) at the cross-section of the height x as shown in Fig. 1(b). The moment equilibrium leads to

M (x,t) = My(t) — Pu(x,t) — F()x, (1)

(@) (b)

Fig. 1. Loading and deformation of the viscoelastic column at (a) upper end and (b) middle section.
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where u(x,?) is the horizontal displacement and M,(¢) is the moment reaction at the lower end of the
column. The equilibrium of horizontal forces gives

V(x,t) = F(t) cosy(x,t) + P siny(x, t), (2)

where /(x, ¢) is the rotational angle of the cross-section. Considering the small magnitude of ¥, Eq. (2) can
be approximated as

V(x,1) = F(t) + Py (x,1). (3)

The shear deformation y(x,) is the difference between the rotation of the column axis du/0x and the ro-
tation of the cross-section y:

0 = 2Dy, @)

When F(r) is a sinusoidal excitation of amplitude 7, and frequency w and the response of the column
reaches a steady state, then the exciting force can be expressed in a complex form as F(¢) = Fye'” and the
induced deformations also have complex forms as

u(x7 t) = u*(x)eiwt7 w(xv t) = ‘//* (x)eiwtv V(xa t) = V*(x)eiwtv (5)

where the superscript * denotes the complex amplitude. The other force components in the steady state
become

M(x,t) = M*(x)e",  V(x,t) = V*(x)e™, My(t) = Mje". (6)
Substituting Egs. (5) and (6) into Egs. (1) and (3), the equilibrium equations in the steady state become

M*(x) = M — Pu*(x) — Fox, (7)

Vi(x) = Fo + Py’ (x). (8)
Also, the shear deformation in Eq. (4) becomes

7 =5y ©

The stress—strain relation of the viscoelastic material is usually expressed in terms of a complex form.
Corresponding to Young’s modulus £ and the shear modulus G, respectively, the complex Young’s
modulus £* and the complex shear modulus G* are defined as

E*=E(1+1n), G =G(1 +1py), (10)

where 7 is the loss factor of the material. When the response of the viscoelastic column reaches a steady
state, the constitutive equation for bending moment can be expressed as

M (x) = E'I, dlpd*)gx) : (11)

where I is the moment of the cross-sectional inertial. The constitutive equation for shear deformation
becomes

Vi(x) = G'4yy" (x), (12)
where A, is the shear area.

Substituting Egs. (8) and (9) into Eq. (12) gives the relation between the horizontal displacement and the
cross-sectional rotation,
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du* P Fy
— =14+ ¥ . 13
dx ( +G*AS)¢ JrG*AS (13)
Substituting Eq. (11) into Eq. (7), the moment equilibrium becomes
d *
S R (14)

Substituting Eq. (13) into the derivative of the above equation with respect to x, we obtain a complex
differential equation

E*[s le/j* X
G 1s)

Satisfying the steady-state boundary conditions, " (0) = 0 and ¥*(h) = 0, the complex amplitude of
cross-sectional rotation can be solved from Eq. (15):

W (x) :% [— 1 4 cos (a;lx) + (71 ;r;ia> sin <oc;lx>]’ (16)

where o* is a complex parameter defined as

P P\
a*:h{E*[ <1+G*A )} . (17)

Substituting Eq. (16) into Eq. (13) and integrating with respect to x, the complex amplitude of horizontal
displacement can be solved by satisfying the steady-state boundary condition »*(0) = 0

o B L) () () ) o

2.2. Horizontal stiffness

The amplitude ratio of the horizontal applied force to the horizontal displacement at the top of the
column represents the horizontal stiffness of the viscoelastic column, which can be derived from Eq. (18)

*

- ]. (19)

(1 —|—G*LAS)(2 tan%) — o

Iy P

* __ —

h_m_z

The above horizontal stiffness is a complex quantity, of which a split form is more convenient in engineering
applications, that is

K = K, +iK;, (20)

where K, the real part of K/, is referred to as the storage stiffness and X;, the imaginary part of K, is called
the loss stiffness.

Before finding the expressions of K, and Kj, the real and imaginary parts of &* defined in Eq. (17) have to
be solved. Let p denote the ratio of the bending rigidity to shear rigidity,

_ EI
C GAR?

p (21)
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Also, let the coefficients o and f§ be defined as

1 P\ P 1
— /= (1 = - . 2
* \/p( +GAS)GAS’ b=17= (22)

GAs

Applying the theory of complex variables, ¢ in Eq. (17) can be split as
o' = a(d —iB), (23)

where 4 and B are defined as

A_a+11b B:na—b

=— 24
1492’ 1+ 52 (24)
with
= (25)
Substituting Eq. (23) into Eq. (19), the real part of K is found as
Pof I,
K=|—"2|——= 26
( h ) r;+71; (26)

and the imaginary part as

P(Xﬁ Fi
5= ()t >

where I'; is defined as

_asin(ad) + b sinh(aB)

cos(ad) + cosh(aB) 2 (28)
and I is defined as
I — 54 sinh(aB) — b sin(aA) (29)

cos(ad) + cosh(aB)

By means of Eq. (26), the variations of the storage stiffness with compressive force for different rigidity
ratios and loss factors can be computed and are plotted in Fig. 2, which reveals that the storage stiffness
decreases with increasing compressive force. When the storage stiffness equals zero, the viscoelastic column
becomes unstable and the corresponding compressive force is referred to as buckling load. Fig. 2 also shows
that increasing the rigidity ratio or loss factor will increase the storage stiffness. Using Eq. (27), the vari-
ations of the loss stiffness with compressive force for different rigidity ratios and loss factors until reaching
the buckling load are plotted in Fig. 3, which shows that the loss stiffness increases with increasing com-
pressive force. Increasing the rigidity ratio or decreasing the loss factor will reduce the loss stiffness.

The complex horizontal stiffness can also be expressed as

K; = |K;le? (30)
where |K;| is the stiffness magnitude and ¢ is the loss angle. According to Egs. (26) and (27)

1= () = 31)

VI +T7
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Fig. 2. Variation of storage stiffness with compressive force for different (a) rigidity ratios and (b) loss factors.
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Fig. 3. Variation of loss stiffness with compressive force for different (a) rigidity ratios and (b) loss factors.

F.
=tan! = .
¢ I,

The variations of stiffness magnitude with compressive force for different rigidity ratios and loss
factors are plotted in Fig. 4, which reveals that the stiffness magnitude initially decreases and then
increases with increasing compressive force. This decreasing tendency becomes less obvious when the
loss factor is high. Higher rigidity ratio or loss factor indicates a higher stiffness magnitude. Fig. 5
shows the variations of loss angle with compressive force for different rigidity ratios and loss factors,
indicating that the loss angle increases with increasing compressive force. In addition, a higher rigidity
ratio has a smaller loss angle. When the compressive force is small, increasing the loss factor will
increase the loss angle, although this tendency becomes reversed when the compressive force is close to

the buckling load.

When 1 = 0, Eq. (28) becomes I', = 2 tan(a/2) — af, and Eq. (29) is I'; = 0. Substituting these I'; and T;

into Egs. (26) and (27) leads to
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Fig. 4. Variation of stiffness magnitude with compressive force for different (a) rigidity ratios and (b) loss factors.
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Fig. 5. Variation of loss angle with compressive force for different (a) rigidity ratios and (b) loss factors.

P of

K=K=>--— " _
h " h2tanZ—ap’

(33)

which is the horizontal stiffness of the elastic column without damping as derived by Haringx’s theory
(Kelly, 1993).

2.3. Hysteresis loops

If the horizontal force acting on the upper end of the viscoelastic column is F(¢) = F, sin wt, which is the
imaginary part of Fye', the horizontal displacement at the upper end of the column becomes

K .
u(h,t) = = sin(wt — ¢). (34)
Kzl
Thus, the stiffness magnitude is equal to the ratio of the maximum horizontal force to the maximum
horizontal displacement



60 H.-C. Tsai, S.-J. Hsueh | International Journal of Solids and Structures 38 (2001) 53-74

)
Kyl =—, (35)
Uy

where u, denotes the amplitude of u(h, ¢).
The time functions F(¢) and u(h, ) have a phase difference ¢. The curves related to these two quantities,
shown in Fig. 6, form hysteresis loops. The tangential slope of hysteresis loops can be derived as

dF K o
—="|cos¢p— L

du o Uy /1 _ (1)2
which indicates

d_F
du

sing |, (36)

K ,
= u—o cos ¢ = |K;|cos ¢ =K. (37)
0

u=0

Therefore, the storage stiffness is equal to the tangential slope of the hysteresis loop at u(h,¢) = 0. The
hysteresis loops for the column of p =10, # = 0.1 and uy/h = 1 under different compressive forces are
plotted in Fig. 6(a) which shows that increasing the compressive force reduces the inclination of loops.
When the compressive force is equal to the buckling load, the storage stiffness is zero, so that the tangential
slope of the hysteresis loop at u = 0 is zero, which is the case of P/GA4, = 9.525 in Fig. 6(a).

The area of a hysteresis loop represents the energy dissipated in a loading cycle,

Aoop = j{qu = nFyup sin ¢ = mkK; (38)

which indicates that the loss stiffness is an index of energy dissipation. The hysteresis loops plotted in
Fig. 6(b) for the columns of different loss factors 5 reveal that higher values of # have larger loop areas,
which is consistent with the phenomenon shown in Fig. 3(b) of higher values of # having higher values
for K;. It should be noted that the loss angle ¢ does not exactly represent energy dissipation. According
to Eq. (38)

A

.1 loop

¢ = SIn 39
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Fig. 6. Hysteresis loops of horizontal displacement (uy = &) for different (a) compressive forces and (b) loss factors.
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which implies that the stiffness magnitude |K;| may affect the phase angle ¢. In Fig. 5(b), when the com-
pressive force is close to the buckling load, the column with a higher # has a smaller ¢ because the column
with larger n has much higher |K;|, as shown in Fig. 4(b).

2.4. Buckling load
When the compressive force is equal to the buckling load, the storage stiffness becomes zero. Thus,

according to Egs. (26) and (28), the buckling load P, is the smallest positive root of the variable P in the
equation

_ 54 sin(ad4) + b sinh(oB)

I:(P) = cos(ad) + cosh(xB) “p =0. (40)

Because I';(P) is a nonlinear function of P, the analytical form of P, cannot be explicitly solved.
When 5 = 0, Eq. (40) becomes

2tan%—o¢ﬁ:0. (41)

Based on Eq. (33), zero storage stiffness occurs at o = mt, but the buckling load solved from Eq. (41) leads to
an infinite value for the storage stiffness, which seems to conflict with the definition of buckling load. Fig. 7
plots the curves of I',(P) in Eq. (40) for different loss factors with p = 10, showing that, as # is closer to
zero, the slope of the curve near I', = 0 becomes steeper and the peak value of I'; becomes higher. It can be
deduced that, when 5 = 0, the P value corresponding to the point of I', = 0 asymptotically becomes the
same P value corresponding to the point of I'; = oo, which can explain the conflicting phenomenon
mentioned above. Assigning « = 7 to the formula of o in Eq. (22), the buckling load at # = 0 can be solved
as

GAj
P =22 (VT amp - 1), (42)
which is the bucking load of the elastic column without damping.

40 ~

Fig. 7. Equation curves to solve buckling load (p = 10).
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Fig. 8. Errors of empirical formula for buckling load.

Although the analytical solution of P, cannot be obtained from Eq. (40), numerical methods can be
applied to calculate the values of P for different # and p, and then, utilizing curve-fitting schemes, the
empirical formula of P, can be established as

PCl'
Gi ™ %(\/1 Ay — 1) +(0.01090 + 0.1142,/p)
+ (—1.825 + 2.400,/p + 0.006066p) 1 + 0.03442p17’. (43)

The error in the above formula for the exact value of P, is plotted in Fig. 8, showing that, when p is
between 1 and 100 and 7 is smaller than 0.9, the maximum error of the empirical formula is less than 5%.
When 5 = 0, the empirical formula takes the form of Eq. (42).

2.5. Height reduction

Height reduction induced by the horizontal displacement of isolation bearing pads is an important
parameter in the design of the base-isolation system (Kelly and Beucke, 1983). Fig. 9 shows the height
reduction of a column element dx, where 9, is the vertical displacement induced by the cross-sectional

rotation

01 = dx(1 — cos ), (44)
and 0, is the vertical displacement caused by the shear deformation y
0, = (dx tany) siny. (45)

Applying Eq. (4) and considering the small magnitudes of y and 7, the height reduction of the column
element can be approximated as

du

d5=51+52~¢<a—5 )dx. (46)
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Fig. 9. Height reduction induced by bending and shear deformations.

The total height reduction at the upper end of the column is

o33

which is the same equation derived by the energy approach (Koh and Kelly, 1986).
If the horizontal force is F(¢) = F; sin wt, the time function of the height reduction at the upper end of
the viscoelastic column can be derived by a lengthy integration of Eq. (47)

F

5(t):h<%>2[g] —\/gg—i—iggcos (ZwH—tanl (Z—j))] (48)

in which gy, g, and g3 are defined as

g1 = fi(ds — 4ds) — fi(4dy) — 2d5 + %, (49)

& :ﬁ(cldl —+ Czdz — C3d3 — C4d4 +%) +fi(6’2d1 — Cldz —+ C4d3 — C3d4) — 2d3 +%, (50)

g3 = —fr(Czdl — C]dz + C4d3 — C3d4) +ﬁ(01d1 + Czdz — C3d3 - C4d4 +%) + 2d4 (51)
with f; and f; being

P 1 1

U e (52)
P

e ©3)

Ci1, C2, C3 and C4 being

o 1 + cos(ad) cosh(aB) | (54)
e (cos(ad) + cosh(aB))”

o sin(a4) sinh(«B) (55)
2T (cos(ad) + cosh(aB))*’
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¢3 = 3 + cos(2ad) cosh(2aB), (56)
¢4 = sin(2aA) sinh(2aB), (57)

and d,, dy, ds, dy and ds being
1 A4 sin(204) cosh(20B) + B cos(2aA) sinh(20.B)

=3 40(A2 + B?) ’ (58)

A cos(204) sinh(20B) — B sin(204) cosh(2aB) 59

1 4a(4> + B?) : (59)
B A sin(xA) + B sinh(aB)

%= 40(4% + B*)(cos(24) + cosh(aB))’ (60)
A sinh(aB) — B sin(04)

% = 34 + B?)(cos(ad) + cosh(aB))” (61)

B 1 sin(ed)  sinh(aB)
% = 20(cos(aAd) + cosh(aB)) ( A B > (62)

Thus, the maximum magnitude of the height reduction in Eq. (48) is

F 2
5max:h<Fo> <|g1|+\/g§+g§) (63)

The maximum height reductions calculated from the above equation shows that, subjected to the same
compressive force and the same amplitude of horizontal displacement, columns of a smaller rigidity ratio p
or a smaller loss factor # have a higher height reduction.

3. Property identification
3.1. Bearing specimens and testing apparatus

Two groups of isolation bearings were used in the cyclic shear tests. One group of bearings were made of
high-damping rubber and the other group of bearings were made of normal rubber, which has a lower
damping value. The dimensions for the two groups of bearings were identical. Each group had two shapes:
circular and square. The circular bearings, whose dimensions are shown in Fig. 10, have 20 thin rubber
layers with thickness 1 = 10 mm and 19 steel shims which are 2 mm thick. The total rubber thickness is
t, = 200 mm and the height of the bearing excluding the end plates is # = 238 mm. The shim diameter is
d =280 mm and there is 10 mm of cover for a total diameter of 300 mm. The square bearings, whose
dimensions are shown in Fig. 11, have the same number of rubber layers and steel shims as do the circular
bearings, but the thickness of the rubber layers is 1 = 6 mm. The total rubber thickness is ¢, = 120 mm and
the height of the bearing excluding the end plates is # = 158 mm. The square shim has a side length s = 180
mm. Including 10 mm of cover, the total side length is 200 mm. Both shapes of bearings have oversize end
plates which permit them to be bolted to the test rig.

The shear area related to the shear stiffness of bearings is defined as

=4, —I—Aitﬁ, (64)

r
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Fig. 10. Dimensions of circular bearings.
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Fig. 11. Dimensions of square bearings.

where A is the cross-sectional area of the cover rubber and 4; is the area of a rubber layer bonded to a steel
shim. The shear stiffness of the cover rubber is included because of its bonding with the end plates.
Multiplying 4; by 4/t is needed to account for the fact that the steel shim does not deform in the composite
system (Kelly, 1993).

The bending stiffness of a single layer of rubber bonded between two rigid plates has been derived as
(Gent and Meinecke, 1970)

(E)yr = 3G(2ﬂ4><1+§<i>2> (65)
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for a circular rubber layer of diameter d and

4

(EI) = 3G<f—2> (1 + 0.7424(4%)2> (66)

for a square rubber layer of side length s. For multiple-layered rubber bearings, the above stiffness must
be modified in the same way as the shear stiffness to account for the presence of the steel shims (Kelly,
1993),

h
Ll = (E])efft_' (67)

Assigning the dimensions of the circular bearing and the square bearing into Egs. (64)—(67), the ratios of
bending stiffness to shear stiffness defined in Eq. (21) are calculated to be p = 7.77 for the circular bearings
and p = 11.78 for the square bearings, which are independent of the material properties.

The testing apparatus for the cyclic shear test of isolation bearings is shown in Fig. 12. As the ends
of a bearing specimen have to sustain the vertical compressive force and simultancously allow the
horizontal movement at one end during the test, the test rig requires a pair of identical bearing
specimens for each test. The lower end of the lower bearing is fixed to the ground and the upper end of
the upper bearing is connected to a vertical hydraulic actuator. During the test, the vertical actuator
applies a constant compressive force to the bearings. A horizontal hydraulic actuator is connected with
the specimens at the junction of the two bearings. The motion of the horizontal actuator follows the
command signal from a controller. By giving the displacement amplitude and frequency to the con-
troller, the horizontal actuator can move sinusoidally. The horizontal force and movement are mea-
sured, respectively, by the load cell and the linear variable differential transformer (LVDT) built into
the horizontal actuator. The vertical force is measured by the load cell attached to the vertical actuator.
An external LVDT is mounted at the top of the upper bearing to measure the vertical displacement. As
the upper bearing and the lower bearing have the same lateral deformation shape, the horizontal force
applied to one bearing specimen is equal to one half of the measured horizontal force; and the vertical
deformation of one bearing specimen is equal to one half of the measured vertical displacement. In the
experimental program, two pairs of the isolation bearings, called sample A and sample B, were tested
for each rubber material and each shape of the bearings. Therefore, the material properties for each
type of rubbers are identified from the tests of eight bearings.

Vertical Actuator

Horizontal
Actuator

Rubber ~
Bearings

Reaction Frame

g

Fig. 12. Test rig for cyclic shear test of isolation bearings.
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3.2. High-damping rubber bearings

It is known (Cole, 1979; Kelly and Celebi, 1984) that the mechanical properties of rubber depend on the
amplitude of motion. In other words, the shear modulus G and the loss factor 5 of rubber may vary with the
displacement amplitude u, in cyclic shear tests. However, during cyclic motion of a particular amplitude,
the mechanical properties can be assumed as constants, so that we can apply the theoretical model of vi-
scoelastic column to identify the dependence of the shear modulus G and the loss factor # on the maximum
shear strain y,,,,, which is related to the displacement amplitude through 7., = uo/t,.

The isolation bearings were tested under different vertical loads and different horizontal displacement
amplitudes. Through the measured horizontal force and displacement histories, the stiffness magnitude and
loss angle of the bearings under a specified compressive force and a specified maximum shear strain can be
calculated from Egs. (35) and (39). Fig. 13 shows the stiffness magnitudes and the loss angles for the circular
bearings of high-damping rubber under different compressive forces at y,,,, = 0.75. Also plotted in Fig. 13
are the theoretical curves of |K;| calculated from Eq. (31) and ¢ calculated from Eq. (32) using the di-
mensions of circular bearing and the identified properties G = 0.611 MPa and n = 0.115. This figure reveals
that the variations of the stiffness magnitude and loss angle of isolation bearings with compressive force
obtained from the experiments are very close to the curves predicted by the theoretical model of the vi-
scoelastic column.

To obtain the identified properties G and 7, an iterative procedure must be applied. At first, set # = 0 and
assume different G values to calculate the theoretical curves of |K;| to fit the experimental values shown in
Fig. 13(a). Apply the least square method to find the best fitting curve, and the corresponding G value is the
shear modulus identified in the first iteration. Use this G value and assume different # values to calculate the
theoretical curves of ¢ to fit the experimental values shown in Fig. 13(b). The n value of the best fitting
curve obtained by the least square method is the loss factor identified in the first iteration. Based on the
values for G and 5 identified in the first iteration, the second iteration can be carried out by the same
process. The iteration procedure is continued until the identified parameters converge. Fig. 14 shows the
convergence of the identified properties listed in Fig. 13. In general, only three or four iterations are re-
quired to reach the convergence.

The shear moduli and loss factors identified from the cyclic shear tests on the circular and square
bearings of high-damping rubber for different maximum shear strains are shown in Fig. 15. It shows that
the shear modulus of the high-damping rubber decreases with increasing the maximum shear strain. The

o~ 300 0 Sample A 064 °© Sample A
g
2 O  Sample B | B Sample B
o 8 o — G=0611MPa n=0115 & |—— G=0611MPa, n=0.11 /°
§ 2004 ' © 0.4-
2 o
.E, g
[
£ [
o 1007 G 0.2+
%3
g
£
e
0 100 200 300 400 0 100 200 300 400
Compression force (kN) Compression force (kN)
(a) Stiffness magnitude (b) Loss angie

Fig. 13. (a) Stiffness magnitude and (b) loss angle of circular bearing of high-damping rubber varied with compressive force at
Vmax = 0.75.
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Fig. 14. Convergence of identified properties of high-damping rubber during iteration.
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Fig. 15. (a) Shear modulus and (b) loss factor of high-damping rubber varied with maximum shear strain.

loss factor of the high-damping rubber has the same tendency for a smaller strain amplitude, but it starts to
increase with increasing the maximum shear strain for a larger strain amplitude. The quadratic regression
for the shear moduli shown in Fig. 15(a) is

G = 0.9569 — 0.68837,,, + 0.2823y2 . (68)
The quadratic regression for the loss factors shown in Fig. 15(b) is

n = 0.1805 — 0.1586y,,,, + 0.094505? 69
a:

ymax N

Substituting Eqs. (68) and (69) into Eqgs. (31) and (32), the stiffness magnitude and loss angle become
functions of the maximum shear strain, which are plotted in Fig. 16 for the circular bearing of high-
damping rubber under the compressive force P = 140 kN. The data measured from the cyclic shear tests are
also plotted in this figure and shown to be consistent with the theoretical model using the material prop-
erties of regression.
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Fig. 16. (a) Stiffness magnitude and (b) loss angle of circular bearing of high-damping rubber varied with maximum shear strain at
P =140 kN.

The hysteresis loop of the circular bearing of high-damping rubber obtained from the cyclic shear test of
sample B under the compressive force P = 140 kN, and the shear strain amplitude y,,,, = 0.625 is plotted in
Fig. 17 and compared with the loop analyzed from the theoretical model using the material properties of
regression. The closeness of the two loops indicates that it is reasonable to assume that the material
properties of rubber are constants during a cyclic motion of fixed amplitude.

The variation of height reduction with the horizontal displacement for the circular bearing of high-
damping rubber during the cyclic shear test of sample B under the compressive force P = 140 kN and the
maximum shear strain y,,,, = 0.625 is plotted in Fig. 18 and compared with the analytical result calculated
from the viscoelastic model using the material properties of regression. Both the experimental and ana-
lytical results show that vertical displacement versus horizontal displacement forms a loop in a full cycle of
motion. The maximum height reductions for the circular bearing of high-damping rubber under different
compressive forces at y,,,, = 0.625 are plotted in Fig. 19, which compares the experimental results with the
analytical results. Because the vertical displacement is of secondary order to the horizontal displacement,
the measured data for height reduction inherently have less accuracy, which leads to a greater deviation of
the experimental results from the analytical results.

25+

Experimental
Theoretical, G=0.637MPa, 1=0.118

Shear force F (kN)
o
1

-25 1
-125 0 125
Horizontal displacement u (mm)

Fig. 17. Hysteresis loop of circular bearing of high-damping rubber, sample B, at P = 140 kN and y,,,, = 0.625.
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3.3. Normal rubber bearings

The cyclic shear tests on normal rubber bearings were carried out and the similar identification proce-
dures are performed to investigate the variations of the shear modulus G and the loss factor # of the normal
rubber with the shear strain amplitude y,,,. Fig. 20 shows that the stiffness magnitudes and loss angles
obtained from the cyclic shear tests on the square bearings of normal rubber under different compressive
forces at the maximum shear strain y,,,, = 0.75 fit the curves calculated from the viscoelastic model using
the identified material properties. The shear moduli and loss factors identified from the circular and square
bearings of the normal rubber are plotted in Fig. 21, from which the quadratic regression of the shear
modulus is found as

G = 0.8280 — 0.19987,,. + 0.070057> (70)

Vmax

and the quadratic regression for the loss factor is
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Fig. 20. (a) Stiffness magnitude and (b) loss angle of square bearing of normal rubber varied with compressive force at y,,,, = 0.75.
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Fig. 21. (a) Shear modulus and (b) loss factor of normal rubber varied with maximum shear strain.

7 =0.07265 — 0.04717y,,.. + 0.0295472 . (71)

Compared with the shear modulus and loss factor of the high-damping rubber shown in Fig. 15, the
variations of the material properties with the maximum shear strain for the normal rubber have the same
tendency as those for the high-damping rubber, but the material properties of the normal rubber are less
sensitive to the change of the maximum shear strain.

Substituting Egs. (70) and (71) into Egs. (31) and (32), the stiffness magnitude and loss angle varied with
the maximum shear strain are plotted in Fig. 22 for the square bearing of normal rubber under the
compressive force P =100 kN and compared with the data measured from the cyclic shear tests. The
hysteresis loop of the square bearing of normal rubber obtained from the cyclic shear test of sample A
under the compressive force P = 100 kN and the shear strain amplitude y,,,, = 1.00 is plotted in Fig. 23 and
compared with the hysteresis loop calculated from the theoretical model using the material properties of
regression shown in Egs. (70) and (71). Figs. 22 and 23 reveal that the behavior of the theoretical model is
consistent with the experiment data of normal rubber bearings.
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Fig. 23. Hysteresis loop of square bearing of normal rubber, sample A, at P = 100 kN and y,,,, = 1.00.

3.4. Influence of exciting frequency

The same identification procedure can be applied to study the influence of external exciting frequency on
the material properties of rubber. In addition to the varied compressive forces and the varied horizontal
displacement amplitudes, the cyclic shear tests on the isolation bearings of high-damping rubber were
performed under varied frequencies of horizontal motion. Through the measured data in the tests, the
graphs of the stiffness magnitude versus the compressive force and the loss angle versus the compressive
force at the specified amplitude and frequency of horizontal displacement are established, from which the
shear modulus and loss factor of the high-damping rubber can be identified by the viscoelastic model for
that specified amplitude and frequency. Applying two-dimensional regression analysis on these identified
parameters, the regression for the shear modulus of high-damping rubber is found as

G = 0.892 — 0.722y,.. + 0.206f; + 0.43672. — 0.069f, 70 — 0.06472, (72)

where f;, is the frequency of horizontal motion with the unit of Hz. The error of this regression is 0.02563.
The regression for the loss factor of high-damping rubber is
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Fig. 25. (a) Stiffness magnitude and (b) loss angle of square bearing of high-damping rubber varied with frequency at P = 75 kN and
Ymax = 0.5.

N =0.192 — 0.0297,. + 0.042f; — 0.0017%_ — 0.03 f;ymar — 0.00412 (73)

of which the error is 0.01430. The surfaces for the regression of shear modulus and loss factor are plotted in
Fig. 24 and compared with the values identified from the cyclic shear tests. Substituting Eqgs. (72) and (73)
into Egs. (31) and (32), the stiffness magnitude and loss angle of the isolation bearings become functions of
compressive force, maximum shear strain and external frequency. For the square bearing of high-damping
rubber under the compressive force P = 75 kN and the maximum shear strain y,,,, = 0.5, Fig. 25 compares
the curves of these functions with the stiffness magnitude and the loss angle measured in the cyclic shear
tests for the varied exciting frequencies. The theoretical results and experimental results are very close.

4. Conclusions

The steady-state response of the viscoelastic columns, where one end is subjected to both sinusoidal
shear force and constant compressive axial load, is solved by the method of separation of variables. The real

73
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part and the imaginary part of the complex horizontal stiffness, denoted as the storage stiffness and the loss
stiffness, respectively, are derived and expressed in closed forms, which are numerically consistent with the
series solution obtained by the method of mode superposition (Koh and Kelly, 1986, 1989). The derived
solution reveals that increasing the compressive axial load will reduce the storage stiffness, which represents
the tangential slope of the hysteresis loop at zero strain, and it will enhance the loss stiffness, which is an
index of energy dissipation. As the compressive load is increased to reach the buckling load, the column
becomes unstable and the storage stiffness is zero. The analytical solution of the buckling load cannot be
explicitly derived, but an empirical formula with a very low error is established. Height reduction of the
column induced by the horizontal displacement, which is an important parameter in application, is also
solved in the closed form.

The material properties of rubber depend on the strain amplitude and the excitation frequency, so that
the response of isolation bearings which are made of rubber possesses the same characteristics. However,
during the motion of a fixed displacement amplitude and frequency, the response of isolation bearings can
be described by the theoretical model of viscoelastic columns with constant shear modulus and constant
loss factor. Consequently, the theoretical solution of viscoelastic columns is employed to construct the
identification procedure to determine the shear modulus and loss factor of rubber from the cyclic shear tests
of isolation bearings. Through this identification procedure, the empirical formulas of shear modulus and
loss factor in terms of strain amplitude and excitation frequency are established for two kinds of rubber
with different damping characteristics.
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