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Abstract

The Haringx theory is usually employed to describe the mechanical behavior of rubber bearings subjected to a

compressive axial load and a lateral shear deformation, but it does not consider the damping e�ect. In order to study

the behavior of isolation bearings which possess an energy-dissipation capacity, the explicit formulas for the horizontal

sti�ness of viscoelastic columns and the corresponded height reduction are derived by the method of variable sepa-

ration. These explicit formulas are then applied to develop an identi®cation procedure to ®nd the shear modulus and

loss factor of the rubber using the cyclic shear tests of isolation bearings. Through this identi®cation procedure, the

empirical formulas for the shear modulus and the loss factor of rubber are established as functions of the strain am-

plitude and the excitation frequency. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Base isolation is a technique for earthquake protection in which isolation bearings are installed in building
foundations to reduce the damaging motion that horizontal earthquakes transmit to buildings. An isolation
bearing consists of thin sheets of rubber bonded to interleaving steel plates, thus, providing su�cient vertical
rigidity to sustain gravitational loading and yet allowing horizontal ¯exibility to shift the fundamental
frequency of the isolated building away from the dominant frequency range of most earthquakes.

The deformation of isolation bearings is usually analyzed by Haringx's theory (Haringx, 1949; Kelly,
1993) which is an elastic beam theory considering the e�ects of axial loading and shear deformation. By this
theory, the horizontal sti�ness of the bearings is shown to decrease with an increase in the compressive axial
load. However, most isolation bearings possess the capacity of energy dissipation, which cannot be sim-
ulated by the elastic column model utilized in Haringx's theory. Koh and Kelly (1986, 1989) previously used
a viscoelastic column model to analyze the steady-state response of isolation bearings subjected to a si-
nusoidal horizontal force and a constant vertical load. They showed that increasing the compressive vertical
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load can enhance the energy dissipation of the viscoelastic column. Their solution was based on the mode
superposition method and is an in®nite series of complex numbers. Although they show that the conver-
gence of the series is very rapid and the ®rst term of the series already gives a good approximation, the form
of complex numbers is not convenient for application. In this article, the horizontal sti�ness and the
corresponding loss angle of the viscoelastic column are solved by the method of variable separation and the
formulas for these solutions are expressed in terms of real numbers, which are then applied to investigate
the behavior of the columns under the excitation of sinusoidal shear forces and constant axial loads.

To de®ne the sti�ness and damping characteristics of isolation bearings requires a knowledge of the
material properties of rubber. Although there is a standard test procedure to measure the shear modulus of
rubber (ASTM, 1987), the properties of the rubber used in the bearings are somewhat di�erent from the
properties measured in the standard test due to di�erent curing conditions and di�erences in specimen size
between the isolation bearings and the specimens of standard test. By means of the theoretical solution of
viscoelastic columns, a procedure to identify the shear modulus and loss factor of the rubber from the cyclic
shear tests of isolation bearings is proposed in this article. Through this identi®cation procedure, the de-
pendence of the material properties on the strain amplitude and input frequency can be explored.

2. Theoretical model

2.1. Steady-state response

The deformation of a viscoelastic column of height h is shown in Fig. 1(a). The lower end of the column is
®xed against any displacement and rotation, whereas the upper end is allowed to move horizontally and
vertically but is still constrained against rotation. The x-axis denotes the centroidal axis of the column with the
origin located at the bottom of the column. When the upper end of the column is subjected to a constant
compressive force P and a time-varied horizontal force, F �t�, it will induce the bending moment M�x; t� and
shear force V �x; t� at the cross-section of the height x as shown in Fig. 1(b). The moment equilibrium leads to

M�x; t� � M0�t� ÿ Pu�x; t� ÿ F �t�x; �1�

Fig. 1. Loading and deformation of the viscoelastic column at (a) upper end and (b) middle section.
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where u�x; t� is the horizontal displacement and M0�t� is the moment reaction at the lower end of the
column. The equilibrium of horizontal forces gives

V �x; t� � F �t� cos w�x; t� � P sin w�x; t�; �2�
where w�x; t� is the rotational angle of the cross-section. Considering the small magnitude of w, Eq. (2) can
be approximated as

V �x; t� �: F �t� � Pw�x; t�: �3�
The shear deformation c�x; t� is the di�erence between the rotation of the column axis ou=ox and the ro-
tation of the cross-section w:

c�x; t� � ou�x; t�
ox

ÿ w�x; t�: �4�

When F �t� is a sinusoidal excitation of amplitude F0 and frequency x and the response of the column
reaches a steady state, then the exciting force can be expressed in a complex form as F �t� � F0eixt and the
induced deformations also have complex forms as

u�x; t� � u��x�eixt; w�x; t� � w��x�eixt; c�x; t� � c��x�eixt; �5�
where the superscript � denotes the complex amplitude. The other force components in the steady state
become

M�x; t� � M��x�eixt; V �x; t� � V ��x�eixt; M0�t� � M�
0 eixt: �6�

Substituting Eqs. (5) and (6) into Eqs. (1) and (3), the equilibrium equations in the steady state become

M��x� � M�
0 ÿ Pu��x� ÿ F0x; �7�

V ��x� � F0 � Pw��x�: �8�
Also, the shear deformation in Eq. (4) becomes

c��x� � du�

dx
ÿ w��x�: �9�

The stress±strain relation of the viscoelastic material is usually expressed in terms of a complex form.
Corresponding to Young's modulus E and the shear modulus G, respectively, the complex Young's
modulus E� and the complex shear modulus G� are de®ned as

E� � E�1� ig�; G� � G�1� ig�; �10�
where g is the loss factor of the material. When the response of the viscoelastic column reaches a steady
state, the constitutive equation for bending moment can be expressed as

M��x� � E�Is

dw��x�
dx

; �11�

where Is is the moment of the cross-sectional inertial. The constitutive equation for shear deformation
becomes

V ��x� � G�Asc
��x�; �12�

where As is the shear area.
Substituting Eqs. (8) and (9) into Eq. (12) gives the relation between the horizontal displacement and the

cross-sectional rotation,

H.-C. Tsai, S.-J. Hsueh / International Journal of Solids and Structures 38 (2001) 53±74 55



du�

dx
� 1

�
� P

G�As

�
w� � F0

G�As

: �13�

Substituting Eq. (11) into Eq. (7), the moment equilibrium becomes

E�Is

dw�

dx
� M�

0 ÿ Pu� ÿ F0x: �14�

Substituting Eq. (13) into the derivative of the above equation with respect to x, we obtain a complex
di�erential equation

E�Is

1� P
G�As

 !
d2w�

dx2
� Pw� � ÿF0: �15�

Satisfying the steady-state boundary conditions, w��0� � 0 and w��h� � 0, the complex amplitude of
cross-sectional rotation can be solved from Eq. (15):

w��x� � F0

P

�
ÿ 1� cos

a�x
h

� �
� 1ÿ cos a�

sin a�

� �
sin

a�x
h

� ��
; �16�

where a� is a complex parameter de®ned as

a� � h
P

E�Is

1

��
� P

G�As

��1=2

: �17�

Substituting Eq. (16) into Eq. (13) and integrating with respect to x, the complex amplitude of horizontal
displacement can be solved by satisfying the steady-state boundary condition u��0� � 0

u��x� � F0h
Pa�

1

��
� P

G�As

�
1ÿ cos a�

sin a�

� �
1

��
ÿ cos

a�x
h

� ��
� sin

a�x
h

� ��
ÿ a�x

h

�
: �18�

2.2. Horizontal sti�ness

The amplitude ratio of the horizontal applied force to the horizontal displacement at the top of the
column represents the horizontal sti�ness of the viscoelastic column, which can be derived from Eq. (18)

K�h �
F0

u��h� �
P
h

a�

�1� P
G�As
��2 tan a�

2
� ÿ a�

" #
: �19�

The above horizontal sti�ness is a complex quantity, of which a split form is more convenient in engineering
applications, that is

K�h � Kr � iKi; �20�
where Kr, the real part of K�h, is referred to as the storage sti�ness and Ki, the imaginary part of K�h, is called
the loss sti�ness.

Before ®nding the expressions of Kr and Ki, the real and imaginary parts of a� de®ned in Eq. (17) have to
be solved. Let q denote the ratio of the bending rigidity to shear rigidity,

q � EIs

GAsh2
: �21�
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Also, let the coe�cients a and b be de®ned as

a �
������������������������������������
1

q
1� P

GAs

� �
P

GAs

s
; b � 1

1� P
GAs

: �22�

Applying the theory of complex variables, a� in Eq. (17) can be split as

a� � a�Aÿ iB�; �23�
where A and B are de®ned as

A � a� gb
1� g2

; B � gaÿ b
1� g2

�24�

with

a �

�����������������������������������������������
1� b2g2

q
� 1

2

vuut
; b �

�����������������������������������������������
1� b2g2

q
ÿ 1

2

vuut
: �25�

Substituting Eq. (23) into Eq. (19), the real part of K�h is found as

Kr � Pab
h

� �
Cr

C2
r � C2

i

�26�

and the imaginary part as

Ki � Pab
h

� �
Ci

C2
r � C2

i

; �27�

where Cr is de®ned as

Cr � 2
a sin�aA� � b sinh�aB�

cos�aA� � cosh�aB� ÿ ab �28�

and Ci is de®ned as

Ci � 2
a sinh�aB� ÿ b sin�aA�

cos�aA� � cosh�aB� : �29�

By means of Eq. (26), the variations of the storage sti�ness with compressive force for di�erent rigidity
ratios and loss factors can be computed and are plotted in Fig. 2, which reveals that the storage sti�ness
decreases with increasing compressive force. When the storage sti�ness equals zero, the viscoelastic column
becomes unstable and the corresponding compressive force is referred to as buckling load. Fig. 2 also shows
that increasing the rigidity ratio or loss factor will increase the storage sti�ness. Using Eq. (27), the vari-
ations of the loss sti�ness with compressive force for di�erent rigidity ratios and loss factors until reaching
the buckling load are plotted in Fig. 3, which shows that the loss sti�ness increases with increasing com-
pressive force. Increasing the rigidity ratio or decreasing the loss factor will reduce the loss sti�ness.

The complex horizontal sti�ness can also be expressed as

K�h � jK�h jei/ �30�
where jK�h j is the sti�ness magnitude and / is the loss angle. According to Eqs. (26) and (27)

jK�h j �
Pab

h

� �
1����������������

C2
r � C2

i

q ; �31�
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/ � tanÿ1 Ci

Cr

: �32�

The variations of sti�ness magnitude with compressive force for di�erent rigidity ratios and loss
factors are plotted in Fig. 4, which reveals that the sti�ness magnitude initially decreases and then
increases with increasing compressive force. This decreasing tendency becomes less obvious when the
loss factor is high. Higher rigidity ratio or loss factor indicates a higher sti�ness magnitude. Fig. 5
shows the variations of loss angle with compressive force for di�erent rigidity ratios and loss factors,
indicating that the loss angle increases with increasing compressive force. In addition, a higher rigidity
ratio has a smaller loss angle. When the compressive force is small, increasing the loss factor will
increase the loss angle, although this tendency becomes reversed when the compressive force is close to
the buckling load.

When g � 0, Eq. (28) becomes Cr � 2 tan�a=2� ÿ ab, and Eq. (29) is Ci � 0. Substituting these Cr and Ci

into Eqs. (26) and (27) leads to

Fig. 3. Variation of loss sti�ness with compressive force for di�erent (a) rigidity ratios and (b) loss factors.

Fig. 2. Variation of storage sti�ness with compressive force for di�erent (a) rigidity ratios and (b) loss factors.
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K�h � Kr � P
h

ab
2 tan a

2
ÿ ab

; �33�

which is the horizontal sti�ness of the elastic column without damping as derived by Haringx's theory
(Kelly, 1993).

2.3. Hysteresis loops

If the horizontal force acting on the upper end of the viscoelastic column is F �t� � F0 sin xt, which is the
imaginary part of F0eixt, the horizontal displacement at the upper end of the column becomes

u�h; t� � F0

jK�h j
sin�xt ÿ /�: �34�

Thus, the sti�ness magnitude is equal to the ratio of the maximum horizontal force to the maximum
horizontal displacement

Fig. 4. Variation of sti�ness magnitude with compressive force for di�erent (a) rigidity ratios and (b) loss factors.

Fig. 5. Variation of loss angle with compressive force for di�erent (a) rigidity ratios and (b) loss factors.
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jK�h j �
F0

u0

; �35�

where u0 denotes the amplitude of u�h; t�.
The time functions F �t� and u�h; t� have a phase di�erence /. The curves related to these two quantities,

shown in Fig. 6, form hysteresis loops. The tangential slope of hysteresis loops can be derived as

dF
du
� F0

u0

cos /

264 ÿ
u
u0�����������������

1ÿ � u
u0
�2

q sin /

375; �36�

which indicates

dF
du

����
u�0

� F0

u0

cos / � jK�h j cos / � Kr: �37�

Therefore, the storage sti�ness is equal to the tangential slope of the hysteresis loop at u�h; t� � 0. The
hysteresis loops for the column of q � 10, g � 0:1 and u0=h � 1 under di�erent compressive forces are
plotted in Fig. 6(a) which shows that increasing the compressive force reduces the inclination of loops.
When the compressive force is equal to the buckling load, the storage sti�ness is zero, so that the tangential
slope of the hysteresis loop at u � 0 is zero, which is the case of P=GAs � 9:525 in Fig. 6(a).

The area of a hysteresis loop represents the energy dissipated in a loading cycle,

Aloop �
I

F du � pF0u0 sin / � pu2
0Ki �38�

which indicates that the loss sti�ness is an index of energy dissipation. The hysteresis loops plotted in
Fig. 6(b) for the columns of di�erent loss factors g reveal that higher values of g have larger loop areas,
which is consistent with the phenomenon shown in Fig. 3(b) of higher values of g having higher values
for Ki. It should be noted that the loss angle / does not exactly represent energy dissipation. According
to Eq. (38)

/ � sinÿ1 Aloop

pjK�h ju2
0

; �39�

Fig. 6. Hysteresis loops of horizontal displacement (u0 � h) for di�erent (a) compressive forces and (b) loss factors.
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which implies that the sti�ness magnitude jK�h j may a�ect the phase angle /. In Fig. 5(b), when the com-
pressive force is close to the buckling load, the column with a higher g has a smaller / because the column
with larger g has much higher jK�h j, as shown in Fig. 4(b).

2.4. Buckling load

When the compressive force is equal to the buckling load, the storage sti�ness becomes zero. Thus,
according to Eqs. (26) and (28), the buckling load Pcr is the smallest positive root of the variable P in the
equation

Cr�P � � 2
a sin�aA� � b sinh�aB�

cos�aA� � cosh�aB� ÿ ab � 0: �40�

Because Cr�P � is a nonlinear function of P, the analytical form of Pcr cannot be explicitly solved.
When g � 0, Eq. (40) becomes

2 tan
a
2
ÿ ab � 0: �41�

Based on Eq. (33), zero storage sti�ness occurs at a � p, but the buckling load solved from Eq. (41) leads to
an in®nite value for the storage sti�ness, which seems to con¯ict with the de®nition of buckling load. Fig. 7
plots the curves of Cr�P � in Eq. (40) for di�erent loss factors with q � 10, showing that, as g is closer to
zero, the slope of the curve near Cr � 0 becomes steeper and the peak value of Cr becomes higher. It can be
deduced that, when g � 0, the P value corresponding to the point of Cr � 0 asymptotically becomes the
same P value corresponding to the point of Cr � 1, which can explain the con¯icting phenomenon
mentioned above. Assigning a � p to the formula of a in Eq. (22), the buckling load at g � 0 can be solved
as

Pcr � GAs

2

������������������
1� 4p2q

p�
ÿ 1
�
; �42�

which is the bucking load of the elastic column without damping.

Fig. 7. Equation curves to solve buckling load (q � 10).
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Although the analytical solution of Pcr cannot be obtained from Eq. (40), numerical methods can be
applied to calculate the values of Pcr for di�erent g and q, and then, utilizing curve-®tting schemes, the
empirical formula of Pcr can be established as

Pcr

GAs

� 1
2

������������������
1� 4p2q

p�
ÿ 1
�
� �0:01090� 0:1142

���
q
p �g

� �ÿ1:825� 2:400
���
q
p � 0:006066q�g2 � 0:03442qg3: �43�

The error in the above formula for the exact value of Pcr is plotted in Fig. 8, showing that, when q is
between 1 and 100 and g is smaller than 0.9, the maximum error of the empirical formula is less than 5%.
When g � 0, the empirical formula takes the form of Eq. (42).

2.5. Height reduction

Height reduction induced by the horizontal displacement of isolation bearing pads is an important
parameter in the design of the base-isolation system (Kelly and Beucke, 1983). Fig. 9 shows the height
reduction of a column element dx, where d1 is the vertical displacement induced by the cross-sectional
rotation w

d1 � dx�1ÿ cos w�; �44�
and d2 is the vertical displacement caused by the shear deformation c

d2 � �dx tan c� sin w: �45�
Applying Eq. (4) and considering the small magnitudes of w and c, the height reduction of the column
element can be approximated as

dd � d1 � d2 � w
du
dx

�
ÿ 1

2
w

�
dx: �46�

Fig. 8. Errors of empirical formula for buckling load.
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The total height reduction at the upper end of the column is

d �
Z h

0

w
du
dx

�
ÿ 1

2
w

�
dx; �47�

which is the same equation derived by the energy approach (Koh and Kelly, 1986).
If the horizontal force is F �t� � F0 sin xt, the time function of the height reduction at the upper end of

the viscoelastic column can be derived by a lengthy integration of Eq. (47)

d�t� � h
F0

P

� �2

g1

�
ÿ

���������������
g2

2 � g2
3

q
cos 2xt
�

� tanÿ1 g3

g2

� ���
�48�

in which g1, g2 and g3 are de®ned as

g1 � fr�d5 ÿ 4d3� ÿ fi�4d4� ÿ 2d3 � 1
4
; �49�

g2 � fr c1d1

ÿ � c2d2 ÿ c3d3 ÿ c4d4 � 1
2

�� fi�c2d1 ÿ c1d2 � c4d3 ÿ c3d4� ÿ 2d3 � 1
4
; �50�

g3 � ÿfr�c2d1 ÿ c1d2 � c4d3 ÿ c3d4� � fi c1d1

ÿ � c2d2 ÿ c3d3 ÿ c4d4 � 1
2

�� 2d4 �51�
with fr and fi being

fr � P
GAs

1

1� g2
� 1

2
; �52�

fi � ÿ P
GAs

g
1� g2

; �53�

c1, c2, c3 and c4 being

c1 � 1� cos�aA� cosh�aB�
�cos�aA� � cosh�aB��2 ÿ 1; �54�

c2 � sin�aA� sinh�aB�
�cos�aA� � cosh�aB��2 ; �55�

Fig. 9. Height reduction induced by bending and shear deformations.
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c3 � 3� cos�2aA� cosh�2aB�; �56�

c4 � sin�2aA� sinh�2aB�; �57�
and d1, d2, d3, d4 and d5 being

d1 � 1

2
ÿ A sin�2aA� cosh�2aB� � B cos�2aA� sinh�2aB�

4a�A2 � B2� ; �58�

d2 � A cos�2aA� sinh�2aB� ÿ B sin�2aA� cosh�2aB�
4a�A2 � B2� ; �59�

d3 � A sin�aA� � B sinh�aB�
4a�A2 � B2��cos�aA� � cosh�aB�� ; �60�

d4 � A sinh�aB� ÿ B sin�aA�
4a�A2 � B2��cos�aA� � cosh�aB�� ; �61�

d5 � 1

2a�cos�aA� � cosh�aB��
sin�aA�

A

�
� sinh�aB�

B

�
: �62�

Thus, the maximum magnitude of the height reduction in Eq. (48) is

dmax � h
F0

P

� �2

jg1j
�

�
���������������
g2

2 � g2
3

q �
: �63�

The maximum height reductions calculated from the above equation shows that, subjected to the same
compressive force and the same amplitude of horizontal displacement, columns of a smaller rigidity ratio q
or a smaller loss factor g have a higher height reduction.

3. Property identi®cation

3.1. Bearing specimens and testing apparatus

Two groups of isolation bearings were used in the cyclic shear tests. One group of bearings were made of
high-damping rubber and the other group of bearings were made of normal rubber, which has a lower
damping value. The dimensions for the two groups of bearings were identical. Each group had two shapes:
circular and square. The circular bearings, whose dimensions are shown in Fig. 10, have 20 thin rubber
layers with thickness t � 10 mm and 19 steel shims which are 2 mm thick. The total rubber thickness is
tr � 200 mm and the height of the bearing excluding the end plates is h � 238 mm. The shim diameter is
d � 280 mm and there is 10 mm of cover for a total diameter of 300 mm. The square bearings, whose
dimensions are shown in Fig. 11, have the same number of rubber layers and steel shims as do the circular
bearings, but the thickness of the rubber layers is t � 6 mm. The total rubber thickness is tr � 120 mm and
the height of the bearing excluding the end plates is h � 158 mm. The square shim has a side length s � 180
mm. Including 10 mm of cover, the total side length is 200 mm. Both shapes of bearings have oversize end
plates which permit them to be bolted to the test rig.

The shear area related to the shear sti�ness of bearings is de®ned as

As � A0 � Ai

h
tr
; �64�
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where A0 is the cross-sectional area of the cover rubber and Ai is the area of a rubber layer bonded to a steel
shim. The shear sti�ness of the cover rubber is included because of its bonding with the end plates.
Multiplying Ai by h=tr is needed to account for the fact that the steel shim does not deform in the composite
system (Kelly, 1993).

The bending sti�ness of a single layer of rubber bonded between two rigid plates has been derived as
(Gent and Meinecke, 1970)

�EI�eff � 3G
pd4

64

� �
1

 
� 2

3

d
4t

� �2
!

�65�

Fig. 11. Dimensions of square bearings.

Fig. 10. Dimensions of circular bearings.
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for a circular rubber layer of diameter d and

�EI�eff � 3G
s4

12

� �
1

�
� 0:7424

s
4t

� �2
�

�66�

for a square rubber layer of side length s. For multiple-layered rubber bearings, the above sti�ness must
be modi®ed in the same way as the shear sti�ness to account for the presence of the steel shims (Kelly,
1993),

EIs � �EI�eff

h
tr
: �67�

Assigning the dimensions of the circular bearing and the square bearing into Eqs. (64)±(67), the ratios of
bending sti�ness to shear sti�ness de®ned in Eq. (21) are calculated to be q � 7:77 for the circular bearings
and q � 11:78 for the square bearings, which are independent of the material properties.

The testing apparatus for the cyclic shear test of isolation bearings is shown in Fig. 12. As the ends
of a bearing specimen have to sustain the vertical compressive force and simultaneously allow the
horizontal movement at one end during the test, the test rig requires a pair of identical bearing
specimens for each test. The lower end of the lower bearing is ®xed to the ground and the upper end of
the upper bearing is connected to a vertical hydraulic actuator. During the test, the vertical actuator
applies a constant compressive force to the bearings. A horizontal hydraulic actuator is connected with
the specimens at the junction of the two bearings. The motion of the horizontal actuator follows the
command signal from a controller. By giving the displacement amplitude and frequency to the con-
troller, the horizontal actuator can move sinusoidally. The horizontal force and movement are mea-
sured, respectively, by the load cell and the linear variable di�erential transformer (LVDT) built into
the horizontal actuator. The vertical force is measured by the load cell attached to the vertical actuator.
An external LVDT is mounted at the top of the upper bearing to measure the vertical displacement. As
the upper bearing and the lower bearing have the same lateral deformation shape, the horizontal force
applied to one bearing specimen is equal to one half of the measured horizontal force; and the vertical
deformation of one bearing specimen is equal to one half of the measured vertical displacement. In the
experimental program, two pairs of the isolation bearings, called sample A and sample B, were tested
for each rubber material and each shape of the bearings. Therefore, the material properties for each
type of rubbers are identi®ed from the tests of eight bearings.

Fig. 12. Test rig for cyclic shear test of isolation bearings.
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3.2. High-damping rubber bearings

It is known (Cole, 1979; Kelly and Celebi, 1984) that the mechanical properties of rubber depend on the
amplitude of motion. In other words, the shear modulus G and the loss factor g of rubber may vary with the
displacement amplitude u0 in cyclic shear tests. However, during cyclic motion of a particular amplitude,
the mechanical properties can be assumed as constants, so that we can apply the theoretical model of vi-
scoelastic column to identify the dependence of the shear modulus G and the loss factor g on the maximum
shear strain cmax, which is related to the displacement amplitude through cmax � u0=tr.

The isolation bearings were tested under di�erent vertical loads and di�erent horizontal displacement
amplitudes. Through the measured horizontal force and displacement histories, the sti�ness magnitude and
loss angle of the bearings under a speci®ed compressive force and a speci®ed maximum shear strain can be
calculated from Eqs. (35) and (39). Fig. 13 shows the sti�ness magnitudes and the loss angles for the circular
bearings of high-damping rubber under di�erent compressive forces at cmax � 0:75. Also plotted in Fig. 13
are the theoretical curves of jK�h j calculated from Eq. (31) and / calculated from Eq. (32) using the di-
mensions of circular bearing and the identi®ed properties G � 0:611 MPa and g � 0:115. This ®gure reveals
that the variations of the sti�ness magnitude and loss angle of isolation bearings with compressive force
obtained from the experiments are very close to the curves predicted by the theoretical model of the vi-
scoelastic column.

To obtain the identi®ed properties G and g, an iterative procedure must be applied. At ®rst, set g � 0 and
assume di�erent G values to calculate the theoretical curves of jK�h j to ®t the experimental values shown in
Fig. 13(a). Apply the least square method to ®nd the best ®tting curve, and the corresponding G value is the
shear modulus identi®ed in the ®rst iteration. Use this G value and assume di�erent g values to calculate the
theoretical curves of / to ®t the experimental values shown in Fig. 13(b). The g value of the best ®tting
curve obtained by the least square method is the loss factor identi®ed in the ®rst iteration. Based on the
values for G and g identi®ed in the ®rst iteration, the second iteration can be carried out by the same
process. The iteration procedure is continued until the identi®ed parameters converge. Fig. 14 shows the
convergence of the identi®ed properties listed in Fig. 13. In general, only three or four iterations are re-
quired to reach the convergence.

The shear moduli and loss factors identi®ed from the cyclic shear tests on the circular and square
bearings of high-damping rubber for di�erent maximum shear strains are shown in Fig. 15. It shows that
the shear modulus of the high-damping rubber decreases with increasing the maximum shear strain. The

Fig. 13. (a) Sti�ness magnitude and (b) loss angle of circular bearing of high-damping rubber varied with compressive force at

cmax � 0:75.
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loss factor of the high-damping rubber has the same tendency for a smaller strain amplitude, but it starts to
increase with increasing the maximum shear strain for a larger strain amplitude. The quadratic regression
for the shear moduli shown in Fig. 15(a) is

G � 0:9569ÿ 0:6883cmax � 0:2823c2
max: �68�

The quadratic regression for the loss factors shown in Fig. 15(b) is

g � 0:1805ÿ 0:1586cmax � 0:09450c2
max: �69�

Substituting Eqs. (68) and (69) into Eqs. (31) and (32), the sti�ness magnitude and loss angle become
functions of the maximum shear strain, which are plotted in Fig. 16 for the circular bearing of high-
damping rubber under the compressive force P � 140 kN. The data measured from the cyclic shear tests are
also plotted in this ®gure and shown to be consistent with the theoretical model using the material prop-
erties of regression.

Fig. 14. Convergence of identi®ed properties of high-damping rubber during iteration.

Fig. 15. (a) Shear modulus and (b) loss factor of high-damping rubber varied with maximum shear strain.
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The hysteresis loop of the circular bearing of high-damping rubber obtained from the cyclic shear test of
sample B under the compressive force P � 140 kN, and the shear strain amplitude cmax � 0:625 is plotted in
Fig. 17 and compared with the loop analyzed from the theoretical model using the material properties of
regression. The closeness of the two loops indicates that it is reasonable to assume that the material
properties of rubber are constants during a cyclic motion of ®xed amplitude.

The variation of height reduction with the horizontal displacement for the circular bearing of high-
damping rubber during the cyclic shear test of sample B under the compressive force P � 140 kN and the
maximum shear strain cmax � 0:625 is plotted in Fig. 18 and compared with the analytical result calculated
from the viscoelastic model using the material properties of regression. Both the experimental and ana-
lytical results show that vertical displacement versus horizontal displacement forms a loop in a full cycle of
motion. The maximum height reductions for the circular bearing of high-damping rubber under di�erent
compressive forces at cmax � 0:625 are plotted in Fig. 19, which compares the experimental results with the
analytical results. Because the vertical displacement is of secondary order to the horizontal displacement,
the measured data for height reduction inherently have less accuracy, which leads to a greater deviation of
the experimental results from the analytical results.

Fig. 17. Hysteresis loop of circular bearing of high-damping rubber, sample B, at P � 140 kN and cmax � 0:625.

Fig. 16. (a) Sti�ness magnitude and (b) loss angle of circular bearing of high-damping rubber varied with maximum shear strain at

P � 140 kN.
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3.3. Normal rubber bearings

The cyclic shear tests on normal rubber bearings were carried out and the similar identi®cation proce-
dures are performed to investigate the variations of the shear modulus G and the loss factor g of the normal
rubber with the shear strain amplitude cmax. Fig. 20 shows that the sti�ness magnitudes and loss angles
obtained from the cyclic shear tests on the square bearings of normal rubber under di�erent compressive
forces at the maximum shear strain cmax � 0:75 ®t the curves calculated from the viscoelastic model using
the identi®ed material properties. The shear moduli and loss factors identi®ed from the circular and square
bearings of the normal rubber are plotted in Fig. 21, from which the quadratic regression of the shear
modulus is found as

G � 0:8280ÿ 0:1998cmax � 0:07005c2
max �70�

and the quadratic regression for the loss factor is

Fig. 18. Vertical displacement loop of circular bearing of high-damping rubber, sample B, at P � 140 kN and cmax � 0:625.

Fig. 19. Height reduction of circular bearing of high-damping rubber varied with compressive force at cmax � 0:625.
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g � 0:07265ÿ 0:04717cmax � 0:02954c2
max: �71�

Compared with the shear modulus and loss factor of the high-damping rubber shown in Fig. 15, the
variations of the material properties with the maximum shear strain for the normal rubber have the same
tendency as those for the high-damping rubber, but the material properties of the normal rubber are less
sensitive to the change of the maximum shear strain.

Substituting Eqs. (70) and (71) into Eqs. (31) and (32), the sti�ness magnitude and loss angle varied with
the maximum shear strain are plotted in Fig. 22 for the square bearing of normal rubber under the
compressive force P � 100 kN and compared with the data measured from the cyclic shear tests. The
hysteresis loop of the square bearing of normal rubber obtained from the cyclic shear test of sample A
under the compressive force P � 100 kN and the shear strain amplitude cmax � 1:00 is plotted in Fig. 23 and
compared with the hysteresis loop calculated from the theoretical model using the material properties of
regression shown in Eqs. (70) and (71). Figs. 22 and 23 reveal that the behavior of the theoretical model is
consistent with the experiment data of normal rubber bearings.

Fig. 20. (a) Sti�ness magnitude and (b) loss angle of square bearing of normal rubber varied with compressive force at cmax � 0:75.

Fig. 21. (a) Shear modulus and (b) loss factor of normal rubber varied with maximum shear strain.
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3.4. In¯uence of exciting frequency

The same identi®cation procedure can be applied to study the in¯uence of external exciting frequency on
the material properties of rubber. In addition to the varied compressive forces and the varied horizontal
displacement amplitudes, the cyclic shear tests on the isolation bearings of high-damping rubber were
performed under varied frequencies of horizontal motion. Through the measured data in the tests, the
graphs of the sti�ness magnitude versus the compressive force and the loss angle versus the compressive
force at the speci®ed amplitude and frequency of horizontal displacement are established, from which the
shear modulus and loss factor of the high-damping rubber can be identi®ed by the viscoelastic model for
that speci®ed amplitude and frequency. Applying two-dimensional regression analysis on these identi®ed
parameters, the regression for the shear modulus of high-damping rubber is found as

G � 0:892ÿ 0:722cmax � 0:206fh � 0:436c2
max ÿ 0:069fhcmax ÿ 0:064f 2

h ; �72�

where fh is the frequency of horizontal motion with the unit of Hz. The error of this regression is 0.02563.
The regression for the loss factor of high-damping rubber is

Fig. 23. Hysteresis loop of square bearing of normal rubber, sample A, at P � 100 kN and cmax � 1:00.

Fig. 22. (a) Sti�ness magnitude and (b) loss angle of square bearing of normal rubber varied with maximum shear strain at P � 100 kN.
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g � 0:192ÿ 0:029cmax � 0:042fh ÿ 0:001c2
max ÿ 0:03fhcmax ÿ 0:004f 2

h �73�
of which the error is 0.01430. The surfaces for the regression of shear modulus and loss factor are plotted in
Fig. 24 and compared with the values identi®ed from the cyclic shear tests. Substituting Eqs. (72) and (73)
into Eqs. (31) and (32), the sti�ness magnitude and loss angle of the isolation bearings become functions of
compressive force, maximum shear strain and external frequency. For the square bearing of high-damping
rubber under the compressive force P � 75 kN and the maximum shear strain cmax � 0:5, Fig. 25 compares
the curves of these functions with the sti�ness magnitude and the loss angle measured in the cyclic shear
tests for the varied exciting frequencies. The theoretical results and experimental results are very close.

4. Conclusions

The steady-state response of the viscoelastic columns, where one end is subjected to both sinusoidal
shear force and constant compressive axial load, is solved by the method of separation of variables. The real

Fig. 24. (a) Shear modulus and (b) loss factor of high-damping rubber varied with frequency and maximum shear strain.

Fig. 25. (a) Sti�ness magnitude and (b) loss angle of square bearing of high-damping rubber varied with frequency at P � 75 kN and

cmax � 0:5.
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part and the imaginary part of the complex horizontal sti�ness, denoted as the storage sti�ness and the loss
sti�ness, respectively, are derived and expressed in closed forms, which are numerically consistent with the
series solution obtained by the method of mode superposition (Koh and Kelly, 1986, 1989). The derived
solution reveals that increasing the compressive axial load will reduce the storage sti�ness, which represents
the tangential slope of the hysteresis loop at zero strain, and it will enhance the loss sti�ness, which is an
index of energy dissipation. As the compressive load is increased to reach the buckling load, the column
becomes unstable and the storage sti�ness is zero. The analytical solution of the buckling load cannot be
explicitly derived, but an empirical formula with a very low error is established. Height reduction of the
column induced by the horizontal displacement, which is an important parameter in application, is also
solved in the closed form.

The material properties of rubber depend on the strain amplitude and the excitation frequency, so that
the response of isolation bearings which are made of rubber possesses the same characteristics. However,
during the motion of a ®xed displacement amplitude and frequency, the response of isolation bearings can
be described by the theoretical model of viscoelastic columns with constant shear modulus and constant
loss factor. Consequently, the theoretical solution of viscoelastic columns is employed to construct the
identi®cation procedure to determine the shear modulus and loss factor of rubber from the cyclic shear tests
of isolation bearings. Through this identi®cation procedure, the empirical formulas of shear modulus and
loss factor in terms of strain amplitude and excitation frequency are established for two kinds of rubber
with di�erent damping characteristics.
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